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1 System Monitoring and Diagnosis With Qualitative Models

The world is infinite, continuous, and continually changing over time. Human knowledge and

human inference abilities are finite, apparently symbolic, and therefore incomplete. Nonetheless,

people normally reason quite effectively about the physical world.

Models of particular systems or mechanisms play an important role in this capability. In service

of a task such as diagnosis or design, simulation predicts the behaviors that follow from a particular

model. In diagnosis or explanation, these predictions include testable consequences of a diagnostic

hypothesis. In design, these predictions make explicit the consequences of a set of design choices.

A qualitative differential equation (QDE) model is a symbolic description expressing a state

of incomplete knowledge of the continuous world, and is thus an abstraction of an infinite set of

ordinary differential equations models. Qualitative simulation predicts the set of possible behaviors

consistent with a QDE model and an initial state.

We have developed a substantial foundation of tools for model-based reasoning with incomplete

knowledge: QSIM and its extensions for qualitative simulation; Q2, Q3 and their successors for

quantitative reasoning on a qualitative framework; and the CC and QPC model compilers for

building QSIM QDE models starting from different ontological assumptions.

The QSIM representation for qualitative differential equations (QDEs) and qualitative behaviors

was originally motivated by protocol analysis studies of expert explanations [Kuipers & Kassirer,

1984]. A QDE represents a set of ODEs consistent with natural states of human incomplete

knowledge of a physical mechanism [Kuipers, 1984]. Qualitative simulation can be guaranteed

to produce a set of qualitative behavior descriptions covering all possible behaviors of all ODEs

covered by the QDE [Kuipers, 1986, 1988b, 1989a].

The subsequent evolution of QSIM has been dominated by the mathematical problems of re-

taining this guarantee while producing a tractable set of predictions. A variety of methods now

exist for applying a deeper analysis, changing the level of description, or appealing to carefully

chosen additional assumptions, to obtain tractable predictions from a wide range of useful models

[Kuipers 1987, 1988a, 1989b; Kuipers & Chiu, 1987; Lee & Kuipers, 1988; Fouch6 _ Kuipers, 1990,

1992; Kuipers, et al, 1991].

Quantitative information can be used to annotate qualitative behaviors, preserving the cover-

age guarantee while providing stronger predictions. Quantitative information may be expressed

as bounds on landmarks and other symbolic elements of the qualitative description [Kuipers &

Berleant, 1988], by adaptively inserting new time-points to improve the resolution of the descrip-

tion and converge to a numerical function [Berleant & Kuipers, 1990], and by deriving envelopes

bounding the possible trajectories of the system [Kay & Kuipers, 1991]. Observations are inter-

preted by unifying quantitative measurements against the qualitative behavior prediction, yielding

either a stronger prediction or a contradiction. As quantitative uncertainty in the QDE and ini-

tial state decrease to zero, the resulting behavioral description converges to the true quantitative

behavior, though computational costs can still be high with current methods.

We have developed two model-compilers for QDE models: CC, which takes the component-
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connection view of a mechanism [Franke & Dvorak, 1989], and QPC, which implements an extended

version of Qualitative Process Theory [Crawford, et al, 1990]. Other model-compilers for QDEs, e.g.

using bond graphs or compartmental models, have been developed elsewhere. These model-buiding

tools will support automatic construction of qualitative models from physical specifications, and

further research into selection of appropriate modeling viewpoints.

There are several inference schemes built on the set of all possible behaviors that are particularly

well-suited to reliable model-based reasoning for diagnosis and design. For design, desirable and

undesirable behaviors can be identified, and additional constraints inferred to guarantee or prevent

those behaviors [Franke, 1989, 1991]. This capability supports the design, analysis, and validation of

heterogeneous, non-linear controllers even under incomplete knowledge [Kuipers & ._strSm, 1991].

For monitoring and diagnosis, plausible hypotheses are unified against observations to strengthen

or refute the predicted behaviors. In MIMIC [Dvorak & Kuipers, 1989, 1991], multiple hypothesized

models of the system are tracked in parallel in order to reduce the "missing model" problem. Each

model begins as a qualitative model, and is unified with a priori quantitative knowledge and with

the stream of incoming observational data. When the model/data unification yields a contradiction,

the model is refuted. When there is no contradiction, the predictions of the model are progressively

strengthened, for use in procedure planning and differential diagnosis. Only under a qualitative

level of description can a finite set of models guarantee the complete coverage necessary for this

performance. The MIMIC approach to monitoring and diagnosis has become very influential, and

we are continuing research on it.

2 Publications on the Topic of the NASA Grant

These papers present the results of the research program supported by NASA grant NAG 2-507. A

few papers are included that date from before the grant, to show the context of the work, and some

of the papers cited below were supported by other funding but represent work that was synergistic

with the NASA grant.

. D. Berleant & B. Kuipers. Combined qualitative and numerical simulation with Q3. Papers of the

Fourth International Workshop on Qualitative Physics, Lugano, Switzerland, 9-12 July 1990. To

appear in Boi Faltings and Peter Struss (Eds.), Recent Advances in Qualitative Physics, MIT Press,
1991.

, C. Chiu & B. J. Kuipers. 1991. Comparative analysis and qualitative integral representations. Papers

of the Third International Workshop on Qualitative Physics, Stanford, California, July 1989. To

appear in Boi Faltings and Peter Struss (Eds.), Recent Advances in Qualitative Physics, MIT Press,
1991.

. J. M. Crawford, A. Farquhar, B. J. Kuipers. 1990. QPC: a compiler from physical models into

qualitative differential equations. Proceedings of the National Conference on Artificial Intelligence
(AAAI-90), AAAI/MIT Press, 1990.
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4. D. T. Dalle Molle, B. J. Kuipers, and T. F. Edgar. 1988. Qualitative modeling and simulation of

dynamic systems. Computers and Chemical Engineering 12: 853-866, 1988.

. D. Dvorak and B. Kuipers. 1989. Model-based monitoring of dynamic systems. In Proceedings of the

Eleventh International Joint Conference on ArtificiaI Intelligence (IJCAI-89). Los Altos, CA: Morgan
Kaufman.

6. D. Dvorak & B. Kuipers. 1991. Process monitoring and diagnosis: a model-based approach. IEEE

EXPERT 6(3): 67-74, June 1991.

.

.

.

10.

11.

12.

13.

14.

15.

16.

17.

I8.

19.

D. L. Dvorak, D. T. Dalle Molle, B. J. Kuipers, and T. F. Edgar. 1990. Qualitative simulation

for expert systems. 1990 Congress, International Federation of Automatic Control (IFAC), Tallin,

Estonia, USSR.

P. Fouch_ & B. Kuipers. 1991. An assessment of current qualitative simulation techniques. Papers of

the Fourth International Workshop on Qualitative Physics, I,ugano, Switzerland, 9-12 July 1990. To

appear in Boi Faltings and Peter Struss (Eds.), Recent Advances in Qualitative Physics, MIT Press,
1991.

P. Fouch_ & B. Kuipers. 1992. Reasoning about energy in qualitative simulation. To appear IEEE

Transactions on Systems, Man, and Cybernetics 22(1), 1992.

D. W. Franke. Representing and acquiring teleological descriptions. Model-Based Reasoning Work-

shop, IJCAI-89, Detroit, Michigan, August 1989.

D. W. Franke. 1991. Deriving and using descriptions of purpose. IEEE Expert, April 1991, pp. 41-47.

D. W. Franke and D. Dvorak. 1989. Component-connection models. Model-Based Reasoning Work-

shop, IJCAI-89, Detroit, Michigan, August 1989.

H. Kay & B. Kuipers. 1991. Numerical behavior envelopes for qualitative models. Manuscript.

B. J. Kuipers. 1984. Commonsense reasoning about causality: deriving behavior from structure.

Artificial Intelligence 24:169 - 204.

B. J. Kuipers. 1986. Qualitative simulation. Artificial Intelligence 29:289 - 338.

B. Kuipers. 1987. Abstracticn by time-scale in qualitative simulation. Proceedings of the National

Conference on Artificial Intelligence (AAAI-87). Los Altos, CA: Morgan Kaufman.

B. J. Kuipers. 1988a. Qualitative simulation using time-scale abstraction. Int. J. Artificial Intelligence

in Engineering 3(4): 185-191, !988.

B. J. Kuipers. 1988b. The qualitative calculus is sound but incomplete: a reply to Peter Struss. Int.

J. Artificial Intelligence in Engineering 3(3): 170-173, 1988.

B. Kuipers. 1989a. Qualitative reasoning: modeling and simulation with incomplete knowledge.
Automatica 25: 571-585.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

B. J. Kuipers. 1989b. Qualitative reasoning with causal models in diagnosis of complex systems. In

L. Widman, K. Loparo, & N. Nielson (Eds.), Artificial Intelligence, Simulation and Modeling. New

York: John Wiley & Sons, 1989, pp. 257-274.

B. J. Kuipers. 1990. Simulation, Qualitative. In M. G. Singh (Ed.), Systems _ Control Encyclopedia,

Supplementary Volume 1. NY: Pergamon Press.

Benjamin Kuipers & Karl/_strSm. 1991. The composition of heterogeneous control laws. In Proceed-

ings of the American Control Conference, 1991.

B. Kuipers and D. Berleant. 1988. Using incomplete quantitative knowledge in qualitative reasoning.

In Proceedings of the National Conference on Artificial Intelligence (AAAI-88). Los Altos, CA: Morgan
Kaufman.

B. Kuipers and D. Berleant. 1990. A smooth integration of incomplete quantitative knowledge into
qualitative simulation. UT AI TR 90-122.

B. Kuipers and C. Chin. 1987. Taming intractible branching in qualitative simulation. Proceedings

of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87). Los Altos, CA:
Morgan Kaufman.

B. J. Kuipers, C. Chin, D. T. Dalle Molle & D. R. Throop. 1991. Higher-order derivative constraints

in qualitative simulation. Artificial Intelligence 51: 343-379.

B. J. Kuipers and J. P. Kassirer. 1984. Causal reasoning in medicine: analysis of a protocol. Cognitive
Science 8:363 - 385.

W. W. Lee and B. Kuipers. 1988. Non-intersection of trajectories in qualitative phase space: a

global constraint for qualitative simulation. In Proceedings of the National Conference on Artificial

Intelligence (AAAI-88). Los Altos, CA: Morgan Kaufman.
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3 Abstracts of Relevant Papers

1. D. Berleant & B. Kuipers. Combined qualitative and numerical simulation with Q3. Papers

of the Fourth International Workshop on Qualitative Physics, Lugano, Switzerland, 9-12 July

1990. To appear in Boi Faltings and Peter Struss (Eds.), Recent Advances in Qualitative

Physics, MIT Press, 1991.

Abstract

A simulation is a sequence of predicted states of a modeled system. A qualitative-

quantitative simulation is a simulation containing both qualitative, and quantitative, state

information such that the qualitat6ive information alone would be a qualitative simulation,

and the quantitative information alone would be a numberical simulation. In this paper,

each state is described with both qualitative and numerical data. Qualitative-quantitative

simulation is a generalization of both qualitative simulation and numerical simulation,

providing a framework for viewing historically disparate genres of simulation.

Qualitative-quantitative simulation also holds promise as an applied technique: Since it

is a generalization of numerical simulation it has useful properties associated with numerical

simulation that qualitative simulation does not have, like numerical predictions. And as a

generalization of qualitative simulation, it has useful properties of qualitative simulation not

present in numerical simulation, like dealing with weakly defined models, and automatically

making qualitative distinctions among device behaviors and among model variable values.

2. C. Chiu & B. J. Kuipers. 1991. Comparative analysis and qualitative integral representations.

Papers of the Third International Workshop on Qualitative Physics, Stanford, California,

July 1989. To appear in Boi Faltings and Peter Struss (Eds.), Recent Advances in Qualitative

Physics, MIT Press, 1991.

Abstract

Comparative analysis is applied to a qualitative behavior of an incompletely known

mechanism, to determine the effect of a given perturbation on the behavior as a whole. This

class of inference is useful in diagnosis, design, planning, and generally for understanding

the relations among a set of alternate qualitative behaviors.

Comparative analysis depends on information which is implicit, and relatively difficult

to extract, from qualitative differential equations. By introducing the definite integral as

a descriptive term linking qualitative variables and their landmarks, we show that the

qualitative integral representation (QIR) makes the required information easily accessible.

Inspired by observations of expert physicists, we have adopted an approach to inference

that allows global algebraic manipulation of the QIR. '_ithin this approach, comparative

analysis can be decomposed into a search and algebraic manipulation problems. Several

detailed examples are presented to clarify our method.

3. J. M. Crawford, A. Farquhar, B. J. Kuipers. 1990. QI:'C: a compiler from physical models

into qualitative differential equations. Proceedings of the National Conference on Artificial

Intelligence (AAAI-90), AAAI/MIT Press, 1990.
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Abstract

Qualitative reasoning can, and should, be decomposed into a model-building task, which

creates a qualitative differential equation (QDE) as a model of a physical situation, and a

qualitative simulation task, which starts with a QDE, and predicts the possible behaviors

following from the model.

In support of this claim, we present QPC, a model builder that takes the general ap-

proach of Qualitative Process Theory, describing a scenario in terms of views, processes,

and influences. However, QPC builds QDEs for simulation by QSIM, which gives it access

to a variety of mathematical advances in qualitative simulation incorporated in QSIM.

We present QPC and its approach to Qualitative Process Theory, provide an example of

building and simulating a model of a non-trivial mechanism, and compare the representation

and implementation decisions underlying QPC with those of QPE.

4. D. T. Dalle Molle, B. J. Kuipers, and T. F. Edgar. 1988. Qualitative modeling and simulation

of dynamic systems. Computers and Chemical Engineering 12: 853-866, 1988.

Abstract

Qualitative simulation is a promising technique for design and analysis, particularly in

model-based reasoning systems. The purpose of qualitative simulation is to explain process

observations by reasoning from physical descriptions to behavioral descriptions. Qualita-

tive simulation has the ability to yeild partial conclusions from incomplete knowledge of

the process. In this work, the qualitative simulation algorithm, QSIM, is used to model

qualitatively several systems from chemical engineering. The QSIM algorithm successfully

generated qualitative descriptions for the open-loop responses for all of the systems stud-

ied including linear, nonlinear and multivariable processes. Some models required the use

of redundant constraints to eliminate otherwise ambiguous parameters. The closed-loop

behavior of a mixing tank has also been successfully analyzed with qualitative versions of

feedback control. The correct dynamic behavior and the qualitative features of proportional

control, such as offset, are captured by the QSIM algorithm.

. D. Dvorak and B. Kuipers. 1989. Model-based monitoring of dynamic systems. In Proceedings

of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89). Los

Altos, CA: Morgan Kaufman.

Abstract

Industrial process plants such as chemical refineries and electric power generation are

examples of continuous-variable dynamic systems (CVDS) whose operation is continuously

monitored for abnormal behavior. CVDSs pose a challenging disgnostic problem in which

values are continuous (not discrete), relatively few parameters are observable, parameter

values keep changing, and diagnosis must be performed while the system operates.

We present a novel method for monitoring CVDSs which exploits the system's dynamic

behavior for diagnostic clues. The key techniques are: modeling the physical system with

dynamic qualitative/quantitative models, inducing diagnostic knowledge from qualitative
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simulations, continuously comparing observations against fault-model predictions, and in-

crementally creating and testing multlple-fault hypothesis. The important result is that

the diagnosis is refined as the physical system's dynamic behavior is revealed over time.

6. D. Dvorak & B. Kuipers. 1991. Process monitoring and diagnosis: a model-based approach.

IEEE EXPERT 6(3): 67-74, June 1991.

Abstract

This paper describes a method for monitoring and diagnosis of process systems based on

three foundational technologies: semi-quantitative simulation, measurement interpretation

(tracking), and model-based diagnosis. Compared to existing methods based on fixed-

threshold alarms, fault dictionaries, decision trees, and expert systems, several advantages
accrue:

• imprecise knowledge of parameter values and functional relationships (both linear and

non-linear) can be expressed in the semi-quatitative model and used during simulation,

producing a valid range for each variable;

• incremental simulation of the model in step with incoming sensor readings, with sub-

sequent comparison of observations to predictions, permits earlier fault detection than

with fixed thresholds;

• by using a structural model of the plant and tracing upstream from the site of unex-

pected readings, model-based diagnosis permits efficient generation of fault candidates

without resort to pre-compiled (and often incomplete) symptom-fault patterns;

• by injecting a hypothesized fault into the model and tracking its predictions against

observations, the dynamic behavior of the plant is exploited to corroborate or refute

hypotheses;

• by simulating ahead in time from the current state, an operator can be forewarned of

nearby undesireable states that the plant might enter.

7. D. L. Dvorak, D. T. Dalle Molle, B. J. Kuipers, and T. F. Edgar. 1990. Qualitative simulation

for expert systems. 1990 Congress, International Federation of Automatic Control (IFAC),

Tallin, Estonia, USSR.

Abstract

Monitoring dynamic chemical processes poses a challenging diagnostic problem when the

diagnosis must be performed while the system operates, when multiple faults are common,

and when observations are limited to a relatively small set of variables. The monitoring

process involves collecting measurements from sensors, combining this data into a picture

of the current state of the system, and assessing any departure from expected behavior.

We present a method called MIMIC for monitoring continuous-variable dynamic systems.

MIMIC relies primarily on knowledge derived from a qualitative or semi-quantative model

of the monitored system and exploits the system's temporal behavior for diagnosis. The

goal of the disgnostic system is to mimic the condition of the physical system by identifying

parameter ranges in a model of the process that are consistent with the observations.
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8. P. Fouch6 & B. Kuipers. 1991. An assessment of current qualitative simulation techniques.

Papers of the Fourth International Workshop on Qualitative Physics, Lugano, Switzerland,

9-12 July 1990. To appear in Boi Faltings and Peter Struss (Eds.), Recent Advances in

Qualitative Physics, MIT Press, 1991.

Abstract

QSIM is a powerful Qualitative Simulation algorithm, which now includes many features

that have proven to be necessary in Qualitative Simulation. These features are: reasoning

with Higher-Order Derivatives, having Multiple Levels of Abstraction, reasoning in the

Phase Space representation, and reasoning about Energy. The aim of this paper is to

provide a comprehensive view of all these techniques, by explaining their rationale, showing

the problems they address and how they interact. Remaining problems in Qualitative
Simulation are also discussed.

9. P. Fouch6 & B. Kuipers. 1992. Reasoning about energy in qualitative simulation. To appear

IEEE Transactions on Systems, Man, and Cybernetics 22(1), 1992.

Abstract

Qualitative modeling and simulation make it feasible to predict the possible behaviors

of a mechanism consistent with an incomplete state of knowledge. Though qualitative sim-

ulation predicts all possible behaviors of a system, it can also produce suprious behaviors,

i.e. behaviors which correspond to no solution of any ordinary differential equation con-

sistent with the qualitative model. In this paper we present a method for reasoning about

energy, which eliminates an important source of spurious behaviors. We apply this method

to an industrially significant mechanism - a non-linear, proportional-integral controller -

and show that qualitative simulation captures the main qualitative properties of such a

system, such as stability and zero-offset control. We believe that this is a significant step

toward the application of qualitative simulation to model-based monitoring, diagnosis, and

design of realistic mechanisms.

10. D. W. Franke. Representing and acquiring teleological descriptions. Model-Based Reasoning

Workshop, IJCAI-89, Detroit, Michigan, August 1989.

Abstract

Teleological descriptions capture the purpose of an entity, mechanism, or activity with

which they are associated. These descriptions can be utilized in diagnostic reasoning by

providing focus in hypothesis generation and selection. Teleological descriptions can also

be utilized in design to index existing designs for reuse and to express design rationale.

While a teleological description of a mechanism is distinct from any structural and

behavioral descriptions, it is claimed that a teleological description is constructed with ref-

erences to elements of structural and behavioral descriptions. In particular, the purpose

of a component or activity can be expressed in terms of the behaviors it prevents or guar-

antees. While these teleological descriptions reference elements of behavioral descriptions,
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they are independent of any particular behavioral language or model domain. Higher level

operators can be constructed from these primitive operators. A technique for deriving tele-

ological descriptions is described, along with its relationship to design requirements and
constraints.

11. D. W. Franke. 1991. Deriving and using descriptions of purpose. IEEE Expert, April 1991,

pp. 41-47.

Abstract

When one examines human-generated descriptions of systems or mechanisms, one finds

that they are rich with descriptions of purpose. Given representation and acquisition

schemes, such descriptions can be utilized in explanation, diagnostic, and design systems.

We describe a language, TeD, for representing descriptions of purpose, along with a design

method in which descriptions of purpose can be captured and subsequently utilized for de-

sign reuse. This language is independent of any particular structure or behavior description

languages, but builds upon generalizations of such languages. In particular, the purpose of

a component or activity is expressed in terms of behaviors prevented, guaranteed, or intro-

duced by the component or activity. The detailed relationship between TeD and structure

and behavior descriptions is described, and a design method for acquiring and utilizing

teleology descriptions is given for an example design.

12. D. W. Franke and D. Dvorak. 1989. Component-connection models. Model-Based Reasoning

Workshop, IJCAI-89, Detroit, Michigan, August 1989.

Abstract

The relation between part and whole is the key to describing the structure of a mecha-

nism. Different modeling methods have different concepts of what should count as a "part"

of a system, and how the parts should relate to each other. The mathematical, differential-

equation-based approach to modeling taken in QSIM essentially says that the "parts" of a

mechanism are the continuous variables that characterize its state, and their relations are

mathematical constraints inherited from the physical structure of the system.

However, a physical system frequently consists of a set of components that relate through

explicit connections (a form of description that is frequently more meaningful to a domain

expert than the differential equations). This paper describes CC, a model-building program

that accepts a component-connection description of a physical system and translates it to

the qualitative differential equations of QSIM. CC provides facilities for component abstrac-

tion and hierarchical component definition, raising the level of abstraction for modeling via

QSIM. Component modes can be specified, and are translated into QSIM operating regions.

CC uses the general variable types of bond graphs (a technique for dynamic physical sys-

tem modeling). Finally, this component-connection paradigm provides the framework for

information utilized in other model-based reasoning tasks such as diagnosis.

13. H. Kay & B. Kuipers. 1991. Numerical behavior envelopes for qualitative models. Manuscript.
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Abstract

We describe a method for improving the bounds on the behaviors of a qualitative dif-

ferential equation (QDE) model augmented with numerical information, by numerically

simulating systems whose solutions are guaranteed to bound the solutions of any system

that corresponds to the QDE. It is shown that when such systems exist, they can be deter-

mined automatically given the QDE and an initial condition. We explain our method and

compare it with other approaches on a simple first-order model. Finally, we show how the

method improves the dynamic monitoring and diagnosis of a vacuum pump-down system.

14. B. J. Kuipers. 1984. Commonsense reasoning about caasality: deriving behavior from struc-

ture. Artificial Intelligence 24:169 - 204.

Abstract

This paper presents a qualitative reasoning method for predicting the behavior of mecha-

nisms characterized by centinuous, time-varying parameters. The structure of a mechanism

is described in terms of a set of parameters and the constraints that hold among them: es-

sentially a "qualitative differential equation." The qualitative behavior description consists

of a discrete set of time-points, at which the values of the parameters are described in terms

of ordinal relations and directions of change. The behavioral description, or envisionment,

is derived by two sets of rules: propagation rules which elaborate the description of the

current time-point, and prediction rules which determine what is known about the next

qualitatively distinct state of the mechanism. A detailed example shows how the envision-

ment method can detect a previously unsuspected landmark point at which the system is

in stable equilibrium

15. B. J. Kuipers. 1986. Qualitative simulation. Artificial fntelligence 29:289 - 338.

Abstract

Qualitative simulation is a key inference process in qualitative causal reasoning. How-

ever, the precise meaning of the different proposals and their relation with differential

equations is often unclear. In this paper, we present a precise definition of qualitative

structure and behavior descriptions as abstractions of differential equations and continu-

ously differentiable functions. We present a new algorithm for qualitative simulation that

generalizes the best features of existing algorithms, and allows direct comparasons among

alternate approaches. Starting with a set of constraints abstracted from a differential equa-

tion, we prove that the QSIM algorithm is guaranteed to produce a qualitative behavior

corresponding to any solution to the original equation. We also show that any qualitative

simulation algorithm will sometimes produce spurious qualitative behaviors: ones which

do not correspond to any mechanism satisfying the given constraints. These observations

suggest specific types of care that must be taken in designing applications of qualitative

causal reasoning systems, and in constructing and validating a knowledge base of mecha-

nism descriptions.
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16. B. Kuipers. 1987. Abstraction by time-scale in qualitative simulation. Proceedings of the

National Conference on Artificial Intelligence (AAAI-87). Los Altos, CA: Morgan Kaufman.

Abstract

Qualitative simulation faces an intrinsic problem of scale: the number of limit hypothe-

ses grows exponentially with the number of parameters approaching limits. We present

a method called Time-Scale Abstraction for structuring a complex system as a hierarchy

of smaller, interacting equilibrium mechanisms. Within this hierarchy, a given mechanism

views a slower one as being constant, and a faster one as being instantaneous. A pertur-

bation to a fast mechanism may be seen by a slower mechanism as a displacement of a

monotonic function constraint. We demonstrate the time-scale abstraction hierarchy using

the interaction between the water and sodium balance mechanisms in medical physiol-

ogy, an example drawn from a larger, fully implemented, program. Where the structure

of a large system permits decomposition by time-scale, this abstraction method permits

qualitative simulation of otherwise intractibly complex systems.

17. B. J. Kuipers. 1988a. Qualitative simulation using time-scale abstraction. Int. J. Artificial

Intelligence in Engineering 3(4): 185-191, 1988.

Abstract

Qualitative simulation faces an intrinsic problem of scale: the number of limit hypothe-

ses grows exponentially with the number of parameters approaching limits. We present

a method called Time-Scale Abstraction for structuring a complex system as a hierarchy

of smaller, interacting equilibrium mechanisms. Within this hierarchy, a given mechanism

views a slower one as being constant, and a faster one as being instantaneous. A pertur-

bation to a fast mechanism may be seen by a slower mechanism as a displacement of a

monotonic function constraint. We demonstrate the time-scale abstraction hierarchy using

the interaction between the water and sodium balance mechanisms in medical physiol-

ogy, an example drawn from a larger, fully implemented, program. Where the structure

of a large system permits decomposition by time-scale, this abstraction method permits

qualitative simulation of otherwise intractibly complex systems.

18. B. J. Kuipers. 1988b. The qualitative calculus is sound but incomplete: a reply to Peter

Struss. Int. J. Artificial Intelligence in Engineering 3(3): 170-173, 1988.

Abstract

Peter Struss has made a valuable contribution to the mathematics of qualitative rea-

soning through his careful analysis of qualitative algebras. In particular, he has firmly

demonstrated that the varying granularity property of qualitative representations is incom-

patible with familiar algebraic properties such as the associative and distributive laws.

However, two points of clarification are required:

(a) Qualitative method3 for solving algebraic (and differential) equations are correctly

regarded as sound bat incomplete. Struss' assertion, that these methods are complete
but unsound, is incorrect.
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(b) There are several useful techniques that ameliorate the impact of the incompleteness:

meta-level reasoning with solutions to simple quantitative instances of qualitative equa-

tions; inclusion of constraints that are quantitatively redundant, but qualitatively in-

dependent; and choice of landmarks to provide corresponding values across quantity

spaces.

19. B. Kuipers. 1989a. Qualitative reasoning" modeling and simulation with incomplete knowl-

edge. Automatica 25: 571-585.

Abstract

Recently developed methods for qualitative reasoning may fill an important gap in the

modeling and control toolkit. Qualitative reasoning methods provide greater expressive

power for states of incomplete knowledge than differential or difference equations, and thus

make it possible to build models without incorporating assumptions of linearity or spe-

cific values for incompletely known constants. Even with incomplete knowledge, there is

enough information in a qualitative description to support qualitative simulation, predict-

ing the possible behaviors of an incompletely described system. We survey results from

several approaches to qualitative reasoning, and provide a detailed example of the appli-

cation of these methods to a simple problem. The mathematical validity of qualitative

simulation is also assessed. Initial results have been encouraging, and steps are now being

taken to develop additional mathematical power, hierarchical decomposition methods, and

incremental quantitative constraints, to make qualitative reasoning into a formal reasoning

method useful on realistic problems.

20. B. J. Kuipers. 1989b. Qualitative reasoning with causal models in diagnosis of complex

systems. In L. Widman, K. Loparo, & N. Nielson (Eds.), Artificial Intelligence, Simulation

and Modeling. New York: John Wiley & Sons, 1989, pp. 257-274.

Abstract

This chapter describes research that we have been doing in qualitative reasoning. The

goal of this work is to understand the role that qualitative reasoning about the structure

and behavior of mechanisms might play in medical diagnosis. Although the motivation

for this work is medical diagnosis, some of the examples discussed are of simple physical

systems, and we anticipate that our results will be app}icable to a variety of nonmedical
domains.

This chapter discusses the motivation for using qualitative causal models as a part of a

diagnostic process. The nature of qualitative models is described and an example given of

a qualitative model of a relatively simple medical mechanish, the water balance mechanism

of the kidney. Finally, in somewhat more detail a recent development that shows promise

of solving certain previously open problems in qualitative reasoning is discussed.

21. B. J. Kuipers. 1990. Simulation, Qualitative. In M. G. Singh (Ed.), Systems _ Control

Encyclopedia, Supplementary Volume 1. NY: Pergamon Press.
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Abstract

QuMitative simulation is a method for predicting the possible qualitatively distinct be-

haviors of a system from an incomplete qualitative description of its structure. Where

numerically-based simulation methods frequently require added assumptions, such as nu-

merical parameter values and linear approximations to unknown or intractable functional

relations, qualitative simulation can be applied to a qualitative description of values and

relations provides a correspondingly weaker result. The result of a qualitative simulation is

frequently a branching tree of possible behaviors. These methods are particularly valuable

in situations characterized by incomplete knowledge such as prediction in biology, medicine,

or economics, or in model-based diagnosis of unknown faults.

22. Benjamin Kuipers & Karl/_strSm. 1991. The composition of heterogeneous control laws. In

Proceedings of the American Control Conference, 1991.

Abstract

To design a control system to operate over a wide range of conditions, it may be nec-

essary to combine control laws which are appropriate to the different operating regions of

the system. The fuzzy control literature, and industrial practice, provide certain non-linear

methods for combining heterogeneous control laws, but these methods have been very dif-

ficult to analyze theoretically. We provide an alternate formulation and extension of this

approach that has several practical and theoretical benefits. First, the elements to be com-

bined are classical control laws, which provide high-resolution control and can be analyzed

by classical methods. Second, operating regions are characterized by fuzzy set membership

functions. The global heterogeneous control law is defined as the weighted average of the

local control laws, where the weights are the values returned by the membership functions,

thereby providing smooth transitions between regions. Third, the heterogeneous control

system may be described by a qualitative differential equation, which allows it to be ana-

lyzed by qualitative simulation, even in the face of incomplete knowledge of the underlying

system or the operating region membership functions. Examples of heterogeneous control

laws are given for level control of a water tank and for motion control of a mobile robot,

and several alternate analysis methods are presented.

23. B. Kuipers and D. Berleant. 1988. Using incomplete quantitative knowledge in qualitative

reasoning. In Proceedings of the National Conference on Artificial Intelligence (AAAI-88).

Los Altos, CA: Morgan Kaufman.

Abstract

Incomplete knowledge of the structure of mechanisms is an important fact of life in rea-

soning, commonsense or expert, about the physical world. Qualitative simulation captures

an important kind of incomplete, ordinal, knowledge, and predicts the set of qualitatively

possible behaviors of a mechanism, given a qualitative description of its structure and ini-

tial state. However, one frequently has quantiative knowledge as well as qualitative, though

seldom enough to specify a numerical simulation.
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We present a method for incrementally exploiting incomplete quantitative knowledge,

by using it to refine the predictions of a qualitative reasoner. Incomplete quantitative de-

scriptions (currently ranges within which unknown values are assumed to lie) are asserted

about some landmark va!ues in the quantity spaces of qualitative parameters. Unknown

monotonic function constraints may be bounded by numerically computable envelope func-

tions. Implications are derived by local propagation across the constraints in the model.

When this refinement process produces a contradiction, a qualitatively plausible behav-

ior is shown to conflict with the quantitative knowledge. When all predicted behaviors of

a given model are contradicted, the model is refuted. If a behavior is not refuted, propaga-

tion of quantitative information results in a mixed quantitative/qualitative description of

behavior that can be compared with other surviving predictions for differential diagnosis.

24. B. Kuipers and D. Berleant. 1990. A smooth integration of incomplete quantitative knowledge

into qualitative simulation. UT AI TR 90-122.

Abstract

Qualitative and quantitative representations and inference methods provide alternate

means for reasoning about the behavior of deterministic systems. The strength of qualita-

tive reasoning is the ability to derive useful, though incomplete, conclusions from incomplete

knowledge of the structure of a system. We show how quantitative information, even when

very incomplete, can be integrated smoothly into the framework of qualitative reasoning.

Our algorithm, Q2, can draw more powerful conclusions than would be possible for a

qualitative simulator alone, without sacrificing the expressive power and graceful degrada-

tion capabilities of qualitative simulation. Each qualitative behavior produced by QSIM

implies a collection of algebraic equations defined over the terms appearing in the behavior

description. In particular, landmark values are names for unknown real numbers, and so

serve exactly as algebraic variables. Qualitatively distinct behaviors imply distinct sets

of equations. The equations follow from the definitions of the qualitative constraints and

fundamental theorems of the differential and integral calculus.

Incomplete knowledge of quantitative values, in the form of bounding intervals, can be

propagated across the equations to produce either (a) a contradiction refuting the current

qualitative behavior, or (b) a qualitative behavior description in which landmarks and

other terms are annotated with quantitative ranges. We sketch the proof of soundness

for Q2, discuss the use of mixed qualitative and quantitative reasoning for measurement

interpretation, and present examples of model-based reasoning with QSIM and Q2 applied

to diagnosis and design.

25. B. Kuipers and C. Chiu. 1987. Taming intractible branching in qualitative simulation.

Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-

87). Los Altos, CA: Morgan Kaufman.

Abstract

Qualitative simulation of behavior from structure is a valuable method for reasoning

about partially known physical systems. Unfortunately, in many realistic situations, a qual-

itative description of structure is consistent with an intractibly large number of behavioral
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predictions. We present two complementary methods, representing different trade-offs be-

tween generality and power, for taming an important case of intractible branching. The

first method applies to the most general case of the problem. It changes the level of the

behavioral description to aggregate an exponentially exploding tree of behaviors into a few

distinct possibilities. The second method draws on additional mathematical knowledge, and

assumptions about the smoothness of partially known functional relationships, to derive

a correspondingly stronger result. Higher-order derivative constraints are automatically

derived by manipulating the structural constraint model algebraically, and applied to elim-

inate impossible branches. These methods have been implemented as extensions to QSIM

and tested on a substantial number of examples. They move us significantly closer to the

goal of reasoning qualitatively about complex physical systems.

26. B. J. Kuipers, C. Chiu, D. T. Dalle Molle & D. R. Throop. 1991. Higher-order derivative

constraints in qualitative simulation. Artificial Intelligence 51: 343-379.

Abstract

Qualitative simulation is a useful method for predicting the possible qualitatively dis-

tinct behaviors of an incompletely known mechanism described by a system of qualitative

differential equations (QDEs). Under some circumstances, sparse information about the

derivatives of variables can lead to intractable branching (or "chatter") representing unin-

teresting or even spurious distinctions among qualitative behaviors. The problem of chatter

stands in the way of real applications such as qualitative simulation of models in the design

or diagnosis of engineered systems.

One solution to this problem is to exploit information about higher-order derivatives of

the variables. We demonstrate automatic methods for identification of chattering variables,

algebraic derivation of expressions for second-order derivatives, and evaluation and appli-

cation of the sign of second- and third-order derivatives of variables, resulting in tractable

simulation of important qualitative models.

Caution is required, however, when deriving higher-order derivative (HOD) expressions

from models including incompletely known monotonic function (M +) constraints, whose

derivatives beyond the sign of the slope are completely unspecified. We discuss the strengths

and weaknesses of several methods for evaluating HOD expressions in this situation.

We also discuss a second approach to intractable branching, in which we change the

level of description to collapse an infinite set of distinct behaviors into a few by ignoring
certain distinctions.

These two approaches represent a trade-off between generality and power. Each appli-

cation of these methods can take a position on this trade-off depending on its own critical
needs.

27. B. J. Kuipers and J. P. Kassirer. 1984. Causal reasoning in medicine: analysis of a protocol.

Cognitive Science 8:363 - 385.

Abstract
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The ability to identify and represent the knowledge that a human expert has about a

particular domain is a key method in the creation of an expert computer system. The first

part of this paper demonstrates a methodology for collecting and analyzing observations of

experts at work, in order to find the conceptual framework used for the particular domain.

The second part develops a representation for qualitative knowledge of the structure and

behavior of a mechanism. The qualitative simulation, or envisionment, process is given

a aualitative structural description of a mechanism and some initialization information,

and produces a detailed description of the mechanism's behavior. The simulation process

has been fully implemented, and its results are shown for a particular disease mechanisms

in nephrology. This vertical slice of the construction of a cognitive model demonstrates

an effective knowledge acquisition method for the purpose of determining the structure

of the representation itself, not simply the content of the knowledge to be encoded in

that representation. Most importantly, it demonstrates the interaction among constraints

derived from the textbook knowledge of the domain, from observations of the human expert,

and from the computational requirements of successful performance.

28. W. W. Lee and B. Kuipers. 1988. Non-intersection of trajectories in qualitative phase space:

a global constraint for qualitative simulation. In Proceedings of the National Conference on

Artificial Intelligence (AAAI-88). Los Altos, CA: Morgan Kaufman.

Abstract

The QSIM algorithm is useful for predicting the possible qualitative behaviors of a

system, given a qualitative differential equation (QDE) describing its structure and an

initial state. Although QSIM is guaranteed to predict all real possibilities, it may also

predict spurious behaviors which, if uncontrolled, can lead to an intractably branching

tree of behaviors. Prediction of spurious behaviors is due to an interaction between the

qualitative level of description and the local state-to-state perspective on the behavior taken

by the algorithm.

In this paper, we describe the non-intersection constraint, which embodies the require-

ment that a trajectory in phase space cannot intersect itself. We develop a criterion for

applying it to all second order systems. It eliminates a major source of spurious predictions.

Using it with the curvature constraint tightens simulation to the point where system-specific

constraints can be applied more effectively. We demonstrate this on damped oscillatory

systems with potentially nonlinear monotonic restoring force and damping terms. Its in-

troduction represents significant progress towards tightening QSIM simulation.


